697 research outputs found

    Observing instantons directly on the lattice without cooling

    Get PDF
    Based on the study of the simple Abelian Higgs model in 1+11+1 dimensions we will present a new method to identify and localize extended instantons. The idea is to measure the topological charge on regions somewhat larger than the extended instantons so as to average out the ultraviolet fluctuations but without losing the detailed topological information when going to the full space. The instanton size and probability density can be directly extracted from this analysis. Local dislocations, which can be avoided for fine enough lattices, can be reinterpreted as modified boundary conditions producing sectors with net topological charge.Comment: 15 pp., uuencoded compressed tar file of full pape

    Modeling sparse connectivity between underlying brain sources for EEG/MEG

    Full text link
    We propose a novel technique to assess functional brain connectivity in EEG/MEG signals. Our method, called Sparsely-Connected Sources Analysis (SCSA), can overcome the problem of volume conduction by modeling neural data innovatively with the following ingredients: (a) the EEG is assumed to be a linear mixture of correlated sources following a multivariate autoregressive (MVAR) model, (b) the demixing is estimated jointly with the source MVAR parameters, (c) overfitting is avoided by using the Group Lasso penalty. This approach allows to extract the appropriate level cross-talk between the extracted sources and in this manner we obtain a sparse data-driven model of functional connectivity. We demonstrate the usefulness of SCSA with simulated data, and compare to a number of existing algorithms with excellent results.Comment: 9 pages, 6 figure

    Localizing and Estimating Causal Relations of Interacting Brain Rhythms

    Get PDF
    Estimating brain connectivity and especially causality between different brain regions from EEG or MEG is limited by the fact that the data are a largely unknown superposition of the actual brain activities. Any method, which is not robust to mixing artifacts, is prone to yield false positive results. We here review a number of methods that allow for addressing this problem. They are all based on the insight that the imaginary part of the cross-spectra cannot be explained as a mixing artifact. First, a joined decomposition of these imaginary parts into pairwise activities separates subsystems containing different rhythmic activities. Second, assuming that the respective source estimates are least overlapping, yields a separation of the rhythmic interacting subsystem into the source topographies themselves. Finally, a causal relation between these sources can be estimated using the newly proposed measure Phase Slope Index (PSI). This work, for the first time, presents the above methods in combination; all illustrated using a single, simulated data set

    Identifying causal networks of neuronal sources from EEG/MEG data with the phase slope index: a simulation study

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The investigation of functional neuronal synchronization has recently become a growing field of research. With high temporal resolution, electroencephalography and magnetoencephalography are well-suited measurement techniques to identify networks of interacting sources underlying the recorded data. The analysis of the data in terms of effective connectivity, nevertheless, contains intrinsic issues such as the problem of volume conduction and the non-uniqueness of the inverse solution. Here, we briefly introduce a series of existing methods assessing these problems. To determine the locations of interacting brain sources robust to volume conduction, all computations are solely based on the imaginary part of the cross-spectrum as a trustworthy source of information. Furthermore, we demonstrate the feasibility of estimating causal relationships of systems of neuronal sources with the phase slope index in realistically simulated data. Finally, advantages and drawbacks of the applied methodology are highlighted and discussed
    corecore